The science

The scientific foundations of our project

We aim at providing effective and user friendly learning tools. To do so, we follow the scientific method and, whenever possible, take design decisions based on solid empirical data. We take advantage of the open-source nature of our project to tightly integrate research, development, deployment and evaluation. Compared to a traditional single-time technology-transfer to a closed-source product, our approach provides a cheaper and better product at a lower price, and therefore optimally exploits public funding. The research underlying our project falls in two categories: educational and technological research.

Educational research

On the educational side, we pursue two lines of research:

  • We aim at understanding how to optimally use mobile robots to teach STEM and computational thinking in general [1, 2, 13, 19], and core computer-science concepts in particular [3, 8, 12]. Our goal is to improve early education in these fields. Beside the empirical validation of the learning, this research also explores the interaction design aspect [4, 9, 7].
  • We aim at understanding the perception and the acceptance of robots as learning tools by children and teachers [6, 11, 13], to ensure that our research work leads to contributions in actual practice.

Technological research

On the technological side, our project is built on Aseba, a software that allows novices to program robots easily and efficiently. Our work on Aseba has been conducted in several contexts:

  • In multi-microcontroller robots, we have explored how to take advantage of the computational power of peripheral microcontrollers to provide hardware modularity, low latency between perception and action, and economical use of the bandwidth of the robot's internal communication bus [14, 16, 15]. We have explored how to do so in a user-friendly way and how to integrate with high-level languages [17] and existing robot software development frameworks, such as ROS.
  • In collective robotics, we have demonstrated how to streamline the development process by allowing instantaneous changes of the robots' programs as well as parallel debugging of all robots [18]. We have proposed a way to do so wirelessly, transparently and at a low price [10].
Bibliography
1. A review: Can robots reshape K-12 STEM education?. Ehsan Karim, Séverin Lemaignan and Francesco Mondada. In 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO 2015), Lyon, France, July 2015.
2. IniRobot : a pedagogical kit to initiate children to concepts of robotics and computer science. Dider Roy, Pierre-Yves Oudeyer, Stéphane Magnenat, Fanny Riedo, Gordana Gerber, Morgane Chevalier, Francesco Mondada. In 6th International Conference on Robotics in Education (RiE), Yverdon les Bains, Switzerland, May 20-22, 2015.
3. Enhancing Robot Programming With Visual Feedback and Augmented Reality. Stéphane Magnenat, Morderchai Ben-Ari, Severin Klinger, and Robert W. Sumner. In 20th Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE), ACM Press, pages 153–158, Vilnius, July 6-8, 2015, DOI: 10.1145/2729094.2742585. Additional material.
4. Thymio: a holistic approach to designing accessible educational robots. Fanny Riedo, Francesco Mondada and Pierre Dillenbourg (Dirs.). EPFL Thesis, n° 6557, 2015.
5. Can robots in classroom attract more women to Engineering? G. Venture, IEEE Robotics & Automation Magazine, vol. 21, no. 4, pages 130–131, 2014, 10.1109/MRA.2014.2360623.
6. A sociological contribution to understanding the use of robots in schools: the Thymio robot. Sabine Kradolfer, Simon Dubois, Fanny Riedo, Francesco Mondada and Farinaz Fassa. In Fifth International Conference on Social Robotics, Springer, Lecture Notes in Computer Science 8755, pages 217–228, Sydney, October 27–29, 2014, 10.1007/978-3-319-11973-1_22.
7. Visual Programming Language for Thymio II Robot. Jiwon Shin, Roland Siegwart, and Stéphane Magnenat. In Interaction Design and Children (IDC), Aarhus, Denmark, June 17–20, 2014. Additional material.
8. Teaching a Core CS Concept through Robotics. Stéphane Magnenat, Jiwon Shin, Fanny Riedo, Roland Siegwart, and Morderchai Ben-Ari. In 19th Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE), ACM Press, pages 315–320, Uppsala, Sweden, June 23–25, 2014, DOI: 10.1145/2591708.2591714.
9. Thymio II, a Robot That Grows Wiser with Children. Fanny Riedo, Morgane Chevalier, Stéphane Magnenat, and Francesco Mondada. In IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), IEEE Press, pages 187–193, Tokyo, Japan, November 7–9, 2013, DOI: 10.1109/ARSO.2013.6705527.
10. Seamless Multi-Robot Programming for the People: ASEBA and the Wireless Thymio II Robot. Philippe Rétornaz, Fanny Riedo, Stéphane Magnenat, Florian Vaussard, Michael Bonani, and Francesco Mondada. In IEEE International Conference on Information and Automation (ICIA), IEEE Press, pages 337–343, Yinchuan, China, August 26–28, 2013, DOI: 10.1109/ICInfA.2013.6720320.
11. Involving and training public school teachers in using robotics for education. Fanny Riedo, Mariza Freire, Michael Bonani, Francesco Mondada. In IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO), IEEE Press, pages 19–23, Munich, Germany, May 21–23, 2012, DOI: 10.1109/ARSO.2012.6213392.
12. A Programming Workshop using the Robot "Thymio II": The Effect on the Understanding by Children. Stéphane Magnenat, Fanny Riedo, Michael Bonani, and Francesco Mondada. In IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO), IEEE Press, pages 24–29, Munich, Germany, May 21–23, 2012, DOI: 10.1109/ARSO.2012.6213393.
13. A two years informal learning experience using the Thymio robot. Fanny Riedo, Philippe Rétornaz, Luc Bergeron, Nathalie Nyffeler and Francesco Mondada. In 6th International Symposium on Autonomous Minirobots for Research and Edutainment, pages 37–48, Bielefeld, Germany, May 23–25, 2011, DOI: 10.1007/978-3-642-27482-4_7.
14. ASEBA: A Modular Architecture for Event-Based Control of Complex Robots. Stéphane Magnenat, Philippe Rétornaz, Michael Bonani, Valentin Longchamp, and Francesco Mondada. IEEE/ASME Transactions on Mechatronics, vol. 16, issue 2, pages 321–329, April, 2011, DOI: 10.1109/TMECH.2010.2042722.
15. The MarXbot, a Miniature Mobile Robot Opening new Perspectives for the Collective-robotic Research. Michael Bonani, Valentin Longchamp, Stéphane Magnenat, Philippe Rétornaz, Daniel Burnier, Gilles Roulet, Florian Vaussard, Hannes Bleuler, and Francesco Mondada. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE Press, pages 4187–4193, Taipei, Taiwan, October 18–22, 2010, DOI: 10.1109/IROS.2010.5649153.
16. The Hand-bot, a Robot Design for Simultaneous Climbing and Manipulation. Michael Bonani, Stéphane Magnenat, Philippe Rétornaz, Francesco Mondada. In Proceedings of the Second International Conference on Intelligent Robotics and Applications (ICIRA), Lecture Notes in Computer Science Volume 5928, Springer Verlag, pages 11–22, Singapore, December 16–18, 2009, DOI: 10.1007/978-3-642-10817-4_2.
17. Aseba Meets D-Bus: From the Depths of a Low-Level Event-Based Architecture into the Middleware Realm. Stéphane Magnenat and Francesco Mondada. In IEEE TC-Soft Workshop on Event-based Systems in Robotics (EBS-RO), St. Louis, MO, USA, October 15, 2009.
18. Scripting the swarm: event-based control of microcontroller-based robots. Stéphane Magnenat, Philippe Rétornaz, Basilio Noris, and Francesco Mondada. In International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), Workshop Proceedings, ISBN: 978-88-95872-01-8, Venice, Italy, November 3–7, 2008.
19. Aseba-Challenge: An Open-Source Multiplayer Introduction to Mobile Robots Programming. Stéphane Magnenat, Basilio Noris, and Francesco Mondada. In Second International Conference on Fun and Games, Lecture Notes in Computer Science Volume 5294, Springer Verlag, pages 65–74, Eindhoven, The Netherland, October 20–21, 2008, DOI: 10.1007/978-3-540-88322-7.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License